The Dataset collected had 11 columns which includes the following

Accuracy of our models

Using the above columns correlation between different sets of columns has been found. Out of all the columns the one which mattered the most was, label indiacting if the person was depressed or not.

The models which were used are:


Multionomial Naive Bayes
The Multinomial Naive Bayes algorithm is a Bayesian learning approach popular in Natural Language Processing (NLP). The program guesses the tag of a text, such as an email or a newspaper story, using the Bayes theorem.

GLOVE
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.
Gaussian Naive Bayes

Naïve Bayes is a probabilistic machine learning algorithm used for many classification functions and is based on the Bayes theorem. Gaussian Naïve Bayes is the extension of naïve Bayes. While other functions are used to estimate data distribution, Gaussian or normal distribution is the simplest to implement as you will need to calculate the mean and standard deviation for the training data.


Sequential RNN

Recurrent Neural Network (RNN) is a Deep learning algorithm and it is a type of Artificial Neural Network architecture that is specialized for processing sequential data. RNNs are mostly used in the field of Natural Language Processing (NLP).